SIMPLE PID TEMPERATURE CONTROLLER

TX2 Series

INSTRUCTION MANUAL

TX2 240611EN

SINNY

Thank you for choosing our product.

Please read and understand the instruction manual before using it.

For your safety, read and follow the below Safety considerations before using.

For your safety, read and follow the considerations in the instruction manual, other manuals and the website.

Keep this instruction manual in a place where you can find it easily.

The product specifications, dimensions, etc., are subject to change due to improvement or discontinuation without notice.

Follow the website for the latest information.

Safety Considerations

- Observe all 'Safety Considerations' for safe and proper operation to avoid hazards.
- Accidents or dangers may occur under particular conditions

⚠ Warnings Failure to follow instructions may result in severe injury or death

01. Fail-safe device must be installed when using the unit with machinery that may cause severe injury or substantial economic loss.(e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime/disaster prevention devices, etc.)

Failure to follow may result in personal injury, economic loss or fire.

02. Do not use the unit in flammable/explosive/corrosive gas, high humidity, direct sunlight, radiant heat, vibration, impact or salinity environments.

Failure to follow may result in an explosion or fire.

03. Install on a device panel to use.

Failure to follow may result in fire or electric shock.

04. Do not connect, repair, or inspect the unit while the power is on.

Failure to follow may result in fire or electric shock.

05. Check 'Connections' before wiring.

Failure to follow may result in fire.

06. Do not disassemble or modify the unit.

Failure to follow may result in fire or electric shock

⚠ Caution Failure to follow instructions may result in injury or product damage

01. When connecting the power input and relay output, use AWG 20 cable, and tighten the terminal screw with a tightening torque of 0.74 to 0.90 N m.

When connecting the sensor input and communication cable without dedicated cable, use AWG 28 to 16 cable and tighten the terminal screw with a tightening torque of 0.74 to 0.90 N m.

Failure to follow this instruction may result in fire or malfunction due to contact failure.

02. Use the unit within the rated specifications.

Failure to follow this instruction may result in fire or product damage.

03. Use a dry cloth to clean the unit, and do not use water or organic solvent. Failure to follow this instruction may result in fire or electric shock.

 Keep the product away from metal chips, dust, and wire residue, which flow into the unit.

Failure to follow this instruction may result in fire or product damage.

Cautions during Use

- Follow in 'Cautions during Use'. Otherwise, it may cause unexpected accidents.
- Check the polarity of the terminals before wiring the temperature sensor. For the RTD, wire it as 3-wire type, using cables in same thickness and length. For the thermocouple(TC), use the designated compensation wire for extending wire
- Keep away from high voltage lines or power lines to prevent inductive noise.
 If installing the power line and input signal line closely, use a line filter or varistor at the power line and a shielded wire at the input signal line.

Do not use equipment which generates strong magnetic force or high-frequency noise.

- Install a power switch or circuit breaker in an easily accessible place for ON or OFF the power.
- After changing the input sensor, modify the value of the corresponding parameter.
- Make a required space around the unit for the radiation of heat.
- For accurate measurement, warm up over 20 min after turning on the power.
- Do not connect unused terminals.
- This unit can be used in the following environments.
- Indoors (in the environment condition rated in 'Specifications')
- Altitude Max.2,000 m
- Pollution degree 2
- Installation category II

Display character meanings

0	1	2	3	4	5	6	7	8	9
	1	2	Ē	4	5	5	7	B	9
Α	b	С	d	Ε	F	G	Н	i	J
A A	4	<u> </u>	d	E	F	G	H		J
K	L	M	n	0	Р		r	S	t
K	1	M	п	ø	P	9	,-	5	Ŀ
U	V	W	Χ	У	Z	_			
H	L	W	11	4	Ξ	-			

Ordering Information

For reference only, the actual product does not support all combinations.

т	Χ	2	-	O	2	B	4	-	6
	/\	_		U	•	\mathbf{e}	~		\mathbf{e}

Size

S: DIN W 48 × H 48 mm H: DIN W 48 × H 96 mm

M : DIN W 72 × H 72 mm

L : DIN W 96 \times H 96 mm

Control output

R : Relay S : SSR drive

Alarm outputs

0 :Alarm 0

1 :Alarm 1

Input type

T :TC (KEJ) R :RTD (Pt100 Cu50)

6 Power supply

2 : 100-240VAC/DC 4 : 24VAC/DC

Product Components

ProductBracket

Instruction manual

Specifi	cations					
Power suppl	у	① 100-240VAC/DC ② 24VAC/DC				
Allowable vo	ltage range	90% - 110% of power supply				
Power consu	ımption	≤ 8VA				
Input type	TC	KEJ				
iliput type	RTD	Pt100 Cu50				
Display accu	racy	±0.5%				
Control	Relay	250VAC~3A				
output SSR		12VDC== ±2V, ≤20mA				
Alarm output	Relay	AL1:250VAC~3A 1NO				
Control type		ON/OFF、PID				
Sampling period		100ms				
Relay life	Mechanical	≥2,500,000 operations				
cyclé	Electrical	≥100,000 operations				
Dielectric s	trength	Between all terminals and case: 3,000VAC ~ 50/60Hz for 1 min				
Vibration		0.75mm amplitude at frequency 5 to 55Hz (for 1 min.) in each X, Y, and Z direction for 2 hours				
Insulation resistance		≥100MΩ (500VDC megger)				
Noise immunity		±2KV square shaped noise (pulse width 1us) by noise simulator R-phase, S-phase				
Memory re	ention	≈10 years(non-volatile semiconductor memory type)				
Ambient te	mp.	-10~50°C storage:-20 ~ 60°C (no freezing or condensation)				
Ambient hu	ımi.	35%~85%RH storage: 35%~85%RH (no freezing or condensation				

Input Type and Using Range

Input type		Display	Using range (°C)	
	К	٤	-30 ∼ 600	
Thermocouple	Е	E	-30 ∼ 600	
	J	1	-30 ∼ 600	
RTD	Pt100	Pt	-99 ∼ 650	
KID	Cu50	сบ	-50 ∼ 150	

Unit Descriptions

- 1.PV display part (Green)
 RUN mode : Displays PV
 (Present value)
- Setting mode : Displays parameter name

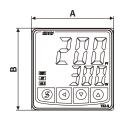
- SV display part (Red)
 RUN mode : Displays SV (Setting value)
 Setting mode : Displays parameter setting value

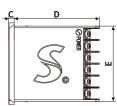
3. Input key

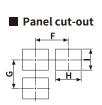
Display	Name
[6]	Mode key
$[\Theta], [\Theta], [\Theta]$	Setting value control key

4. Indicator

Display	splay Name Description				
AT	Auto tuning	Flashes during auto-tuning every 1 sec			
OUT	Control output	Turns ON when the control output is ON			
AL1	Alarm output	Turns ON when the alarm output is ON			

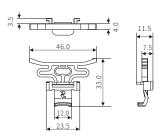

5. PC loader port: For connecting the communication converter (sold separately).

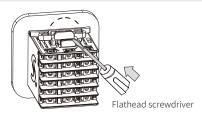

E	r	rc	r	S


Display	Description	Output	Treatment
ннн	The PV is higher than input range	OFF	When PV is within the rated
LLL	The PV is lower than input range	OFF	input range, this display disappears

Dimensions

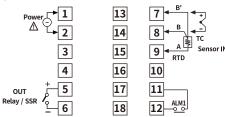
• Below is based on TX2-S Series , Unit: mm

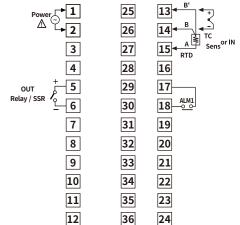




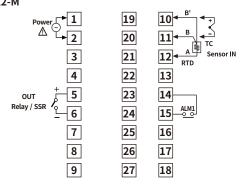
	Body	Body					Panel cut-out			
	Α	В	С	D	E	F	G	Н	I	
TX2-S	48	48	3	50	44.5	≥70	≥70	45	45	
TX2-H	48	96	3	50	91	≥70	≥120	45	92	
TX2-M	72	72	3	50	67	≥95	≥95	68	68	
TX2-I	96	96	3	50	91	>120	>120	92	92	

■ Bracket


Installation Method


Insert the unit into a panel, fasten the bracket by pushing with a flathead screwdriver

Connections


TX2-S

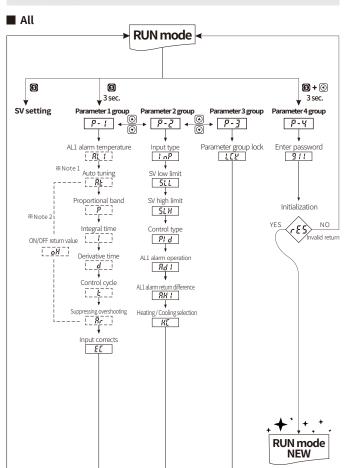
■ TX2-H / L

■ TX2-M

Crimp Terminal Specifications

• Unit: mm, Use the crimp terminal of follow shape

Round crimp terminal


Initial Display When Power is ON

When power is supplied, after all display will flash for 1 sec,

Model name/Input type/Range is displayed sequentially and entered into RUN mode

Display part	Model	Input type	Range	RUN mode
PV	FIIS	InP	999	нин
SV	236	ħ	- 30	100

Parameters

• Some parameters are activated /deactivated depending on the model or other parameters

③ 3 sec.

③ 3 sec.

- Note 1 : AL1 alarm temperature [RLI] are displayed or hidden depending on the set-of-AL1 alarm operation [RdI]
- Note 2 : The contents of the dotted line are displayed or hidden depending on the set of Control type [P_{l} d]
- Return to the RUN mode without saving when there is no key input for more than 30 seconds
- $\bullet \ \mathsf{Recommended} \ \mathsf{parameter} \ \mathsf{setting} \ \mathsf{sequence} : \mathsf{Parameter} \ \mathsf{2} \ \mathsf{group} \\ \to \ \mathsf{Parameter} \ \mathsf{1} \ \mathsf{group} \\ \to \ \mathsf{SV} \ \mathsf{setting} \ \mathsf{mode}$
- Change the parameters of the Input type [I, nP], SV low limit [SLL] SV high limit [SLM] and "SV" settings will be initialised
- \bullet After restoring the factory settings :
 - $1.\,\mathsf{All}\,\mathsf{parameters}\,\mathsf{will}\,\mathsf{be}\,\mathsf{restored}\,\mathsf{to}\,\mathsf{their}\,\mathsf{initial}\,\mathsf{values}$
 - 2. The SV setting is restored to "100"

③ 3 sec.

■ Parameter 1 group [P-!]

Parameter	Display	Default	Setting range	Description
Parameter	Display	Derault	Setting range	Description
AL1 alarm temperature	AL I	10	Full range	For setting the AL1 alarm temperature
Auto tuning	RE	OFF	ON or OFF	OFF: Stop, ON: Execution
Proportional band	p	30	0.1~999	The Proportional band of PID control(°C/°F) recommended get from auto-tuning
Integral time	}	240	0~999	The Integral time of PID control(sec.) recommended get from auto-tuning
Derivative time	d	60	0~999	The Derivative time of PID control(sec.) recommended get from auto-tuning
Control cycle	Ł	2 or 20	1~100	The PID control cycles, suggest the 20s for Relay output and 2s for SSR output. For other outputs, this parameter is invalid
Suppressing overshooting	Rr.	60	1~100	For suppress overshooting of PID control, it recommended getting from auto-tuning
ON/OFF return value	ρН	2	1~999	For ON/OFF control, set the interval data between ON and OFF
Input corrects	EC	0	-99~999	The controller has no error for correct errors occurring in external inputs

■ Parameter 2 group [🎖 - 🖧]

Parameter	Display	Default	Setting range	Description	
Input type	1 nP	Refer to 'Inpi	ut Type and Using	gRange'	
SV low limit	SLL	Low limit of	the sensor type	Limit the lower of the SV	
SV high limit	SLH	High limit of	the sensor type	Limit the higher of the SV	
Control type	Pld	ON	ON or OFF	Control type selection ON is PID control, OFF is ON/OFF control	
AL1 alarm operation	Rd I	1	0~16	12 alarm types selection Refer to 'Alam operation'	
AL1 alarm return difference	ян і	0.4	0~100	Difference needed to return to a non-alarm state for the AL1	
Heating/Cooling selection	нΕ	HET	HET or COL	HET is the heating mode; COL is the cooling mode	

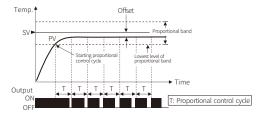
■ Parameter 3 group [P-3]

Parameter	Display	Default	Setting range	Description
Parameter group lock	FER	0	0 1 2 3 4	0 Unlock 1 Lock P-3 2 Lock P-3,P-2 3 Lock P-3,P-2,P-1 4 Lock P-3,P-2,P-1,SV setting

Function Description

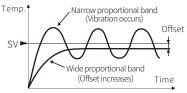
Auto-tuning RUN/STOP

- PID control auto-tuning measures the thermal characteristics and thermal response speed of various control objects in the temperature controller itself.
- During Auto-tuning operation, the indicator 'AT' flashes every 1 second.
- After Auto-tuning ends, the indicator 'AT' turns OFF, and Auto-tuning [Rk] is set as OFF
 automatically.
- At the auto-tuning time, the heating system shall work, and the PV is lower than SV.
- Auto-tuning [Rt] will show when the Control type [Pt d] code is "an"
- "MMM"/"LLL" error occurs, the auto-tuning will be automatically interrupted.
- When the auto-tuning interrupt, the parameters of $P \setminus I \setminus d \setminus Rr$ will not be modified.
- After auto-tuning ends, the AT indicator stops flashing, each P \(\cdot \). \(d \) \(Rr \) value is saved automatically, and back to the RUN mode, working in the new P \(\cdot \), \(d \) \(Rr \) parameters.


■ PID Control

For PID control, proportional control (P) operates smooth control without vibration, automatically corrects offset with integral action (I), and speeds up response to disturbance with differential action (D), It shows excellent control results even for control targets with delay time.

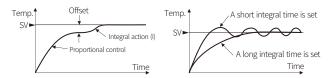
- Proportional control (P): Smooth control without vibration
- Integral action (I): Automatically correct offset
- Differential action (D): Fast response to disturbances


Proportional band

The proportional band is the temperature range where PV (present value) is to be controlled by adjusting the ON/OFF ratio during the proportional period (T).

If the proportional band width is increased, the time for the PV to reach the SV becomes more longer, and the offset becomes larger because the control output starts ON and OFF at a lower or higher temperature.

If the proportional band width is made small, the time for the PV to reach the SV is short, and the offset is small. But vibration is easy to occur because the control output starts ON and OFF operations close to the SV.

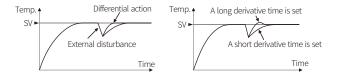

Integral time

Integral action automatically corrects the offset caused by proportional control to keep the SV stable.

Integral time is the unit indicating the strength of the integral operation. It is the time when the MV $\,$ of the constant deviation and the MV by the proportional operation are same.

If the integral time is shortened, the correction operation becomes stronger, and the offset can be removed within a short time, but it causes vibration.

If the integral time is long, the correction operation becomes weak, and it takes a long time to eliminate the offset.

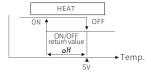

Derivative time

 $The differential \ action \ adjusts \ the \ manipulated \ variable \ in \ proportion \ to \ the \ slope \ of \ the \ temperature$ change, quickly responding to sudden temperature changes due to disturbance and stabilising the control within a short time.

Derivative time is the unit for the strength of the derivative action. It is the time when the MV of differential and the MV by proportional control are same.

If the derivative time is shortened, the correction action to the disturbance temperature is weakened, and the response to the sudden temperature change is slowed, but overshoot

If the derivative time is long, the correction action for the disturbance temperature becomes stronger, and overshoot is easy to occur.



ON/OFF Return Value

Set the interval data between the ON and OFF of the ON/OFF control.

ON/OFF return value [all] will show, when the Control type [Pld] is " aFF ".

If the return difference is too small, the control output may become unstable due to external interferences

Input corrects

The controller itself has no error, for correct errors occurring in external inputs.

The input correct function can be mainly used when the sensor cannot be directly attached to the control object to be measured, or when the temperature difference between the location where the sensor is attached and the location to be measured is corrected.

- Example) When the actual temperature is 80°C, and the displayed temperature of the thermostat is 78°C, set Input correct [££]: DD2 and the display temperature is 80°C.
- . MMM or LLL is displayed when the input correction result value, PV, is out of the range for each input sensor.

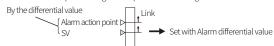
Shortcut Key

Shortcut key parameters	Dispaly	Description	
3 s	AT indicator flashes every 1 sec	Operation Auto-tuning, continue to press (for 3 sec. again to stop.	
③ 3s]nn]uu ==	Enter Manual mode, modify output (P00-P100) by (a) and (b) keys, press (b) key once to exit manual mode and return to RUN mode.	

Parameter Reset

Hold on **⑤** + **⑥** for 3s will enter *P* - 4;

After putting the password 911, enter the initialisation settings [, £5].

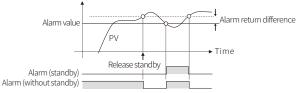

If the selection is " no ", it will return; if it is "YES", all parameters are initialised.

AL1 Alarm Operation

set value	Alarm operation	Positive alarm value (Al1)	Negative alarm value (-Al1)	Deviation alarm/ absolute value alarm			
0	OFF	Not used					
1	High-limit alarm	AL1 ON	ON ON SV	Deviation alarm			
2	Low-limit alarm	ON AL1	ON ON SV	Deviation alarm			
3	High/low-limit reverse alarm	AL1 AL1 ON ON SV	Always OFF	Deviation alarm			
4	High/low-limit alarm	AL1 AL1 ON	Always ON	Deviation alarm			
5	Absolute value high-limit alarm	AL1 ON	ON ON	Absolute value alarm			
6	Absolute value low-limit alarm	ON ON	ON -AL1	Absolute value alarm			
10	OFF	Not used	•				
11	Standby high-limit alarm	AL1 ON	ON ON SV	Deviation alarm			
12	Standby low-limit alarm	ON AL1	ON ON SV	Deviation alarm			
13	Standby high/low-limit reverse alarm	AL1 AL1 ON ON SV	Always OFF	Deviation alarm			
14	Standby high/low-limit alarm	AL1 AL1 ON	Always ON	Deviation alarm			
15	Standby absolute value high-limit alarm	AL1 ON	ON ON	Absolute value alarm			
16	Standby absolute value low-limit alarm	ON ON ON	ON -AL1	Absolute value alarm			

Deviation Alarm

Used when you want to create a linkage with the SV. The alarm action point changes in response to the change of SV.

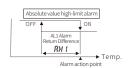

Absolute Value Alarm

Used when no required linkage with the SV. User temperature (absolute value) Set alarm action points Alarm action point Set with alarm temperature (absolute value).

Standby Function

The attached standby function means that when power is on, even if currently in an alarm condition, it is ignored and always OFF. When the temperature enters the non-alarm range, the attached standby mode ends.

Example) Alarm type: Standby low-limit alarm


AL1 Alarm Return Difference

Difference needed to return to a non-alarm state.

Example) AL1 alarm temperature [RL I] is set to 120, AL1 alarm return value [RK I] is 20, the alarm is ON when the temperature reach 120° C, and the alarm is OFF when the temperature is less than 100°C.

• Range: 0 ~ 100°C

Initial value: 0.4°C

